Process of Extracting DNA from a Human:
The follwoing Materials and Equipment are needed in the process of extracting DNA.
- Sissors
- Buccal Swab
- Eppendorf Tube (Sample Tube)
- Warm Water Bath
- Micropippettors
- MicroCentrifuge
- Lysis Solution
- Concentrated Salt Solution
- Isopropyl Alcohol
Step 2: After swabbing your cheek, use scissors to cut off the excess of the stem leaving only the tip to fall off into the Eppendorf Tube.
Step 3: Using a Micropoppettor transfer Lysis Solution into the Eppendorf Tube. (Lysis comes from the Greek word (to separate)). Lysis contains two ingedents; degerents and Proteinase K. Degerents disrupt the cell and nuclear envelope causing the cell to burst. The proteinas K cause the Histone to free DNA.
Step 4: The Eppendorf Tube is then placed into a Warm Water Bath which will allow DNA to be freed from cells.
Step 5: The Buccal Swab is removed from the Warm Water Bath and Concentrated Salt Solution is added to the Eppendorf Tube. This causes the proteins & debris to clump together separating from the DNA.
Step 6: The tube is then placed into a MicroCentrifuge with a second Eppendorf tube that is filled with water (to help with balance) and spun at a high rate of speed. This will allow the heavy clumps of proteins & debris to sink to the bottom while strands of DNA are disrupted through the liquid.
Step 7: Once the spinning process is completed the top liquid is then removed and placed into a clean Eppendorf Tube.
Step 8: In the clean tube that you have just put the DNA liquid in, you will add Isopropyl Alcohol.
Step 9: Since DNA is not soluble, by adding Isoproply Alcohol, you'll be able to see DNA with the naked eye. This only possible due to the fact the DNA will be in a clump.
Step 10: Once again, place tube in MicroCentrifuge which will allow DNA to sink to the bottom of the tube. When done, remove liquid from tube allowing DNA to dry. After this the DNA can be frozen or a different solution may be added.
What specific type of tissue is that inside the mouth?
Epithelial Tissue - Stratified Squamous
Gel Electrophoresis
Gel Electrophoresis is a process of adding electrical currents into a strand of DNA allowing it to be moved. In manipulating the DNA, it is was determined that short strands moved quicker than the long strands. Over a period of time short stands of DNA were found to move farther away from their starting point than long strands. The "Gel" is a filter made of Jell-o or sponge like material with many holes at the top. The DNA that had the same length would move at the same rate of speed and end up grouping together. DNA is almost impossible to see by the naked eye therefore staining must happen. By using this method DNA would sort themselves.
There are at least 10 steps if not more in the Electrophoresis process.
- Make a gel substance with the same consistancy as jell-o. This can be done by taking a table spoon of powder Agarose, flask, gel mold gel comb, buffer liquid (Salt water solution) & microwave.
- With a micropippettor add a loading buffer to the DNA sample. The loading buffer contains dye.
- Transfer the DNA sample into the well of the gel using a micropippettor.
- Next take a sample from the DNA size standard and put into the well of the gel. Again using a new micropippettor.
- The Eletrophoresis box should have a red (Positive current) and a black (negative current) cable. Remember on your power source make sure black goes to black and red goes to red.
- Pour your liquid buffer (Salt water solution) into eletrophoresis box.
- Gengle set your gel mold down into the liquid buffer in the eletrophoresis box. Make sure your wells are closet to the negative charge cable.
- Turn on eletrophoresis box. Notice, repelled by the negative charge, the DNA moves through the gel towards the positive current at the other end.
- Remove gel from mold and place in stain solution. After 1/2 hour to an hour place on UV light box.
- In order to see DNA with the naked eye one must use a stain in the DNA loading buffer. The stain solution is Ethidium Bromide. Ethidium Bromide binds to the DNA allowing visibility under a fluorescent light. (Whenever using a light box remember to wear eye protection.)
- Turn on Light Box
Hughes, Howard. "Gel Electrophoresis." Gel Electrophoresis. Web. 15 Nov. 2015.
In the research of molecular biology, in order to further study the modification of target gene, dna sequencing is an effective way. Thanks for your post!
ReplyDeleteI think this is a better than average article. You make this data intriguing and locks in. You give perusers a considerable measure to consider and I welcome that sort of composing. https://www.xetnghiemadnchacon.com/dich-vu/
ReplyDeleteOver the years, cooling bulk solids such as sugar, fertilizer, chemicals, plastics, dried biosolids, minerals, and many other types of grains, crystals and bulk powders using the traditional technologies does not guarantee quality final products. As a result, the business productivity was greatly affected and most of all this technology has lots of disadvantages to deal with. spyfone
ReplyDelete